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Recovery of the magnetic dipolar interaction between nuclei bear-
ing the same gyromagnetic ratio in rotating solids can be promoted
by synchronous rf irradiation. Determination of the dipolar inter-
action strength can serve as a tool for structural elucidation in
polycrystalline powders. Spinning frequency dependent narrow-
band (nb) RFDR and SEDRA experiments are utilized as simple
techniques for the determination of dipolar interactions between
the nuclei in coupled homonuclear spin pairs. The magnetization
exchange and coherence dephasing due to a fixed number of rotor-
synchronously applied π-pulses is monitored at spinning frequen-
cies in the vicinity of the rotational resonance (R2) conditions. The
powder nbRFDR and nbSEDRA decay curves of spin magnetiza-
tions and coherences, respectively, as a function of the spinning
frequency can be measured and analyzed using simple rate equa-
tions providing a quantitative measure of the dipolar coupling. The
effects of the phenomenological relaxation parameters in these rate
equations are discussed and an improved methodology is suggested
for analyzing nbRFDR data for small dipolar couplings. The dis-
tance between the labeled nuclei in the 1,3-13C2-hydroxybutyric acid
molecule is rederived using existing nbRFDR results and the new
simulation procedure. A nbSEDRA experiment has been performed
successfully on a powder sample of singly labeled 1-13C-L-leucine
measuring the dipolar interaction between the labeled carboxyl car-
bon and the natural abundant β-carbon. Both narrowband tech-
niques are employed for the determination of the nuclear distances
between the side-chain carbons of leucine and its carbonyl carbon
in a tripeptide Leu-Gly-Phe that is singly 13C-labeled at the leucine
carbonyl carbon position. C© 2002 Elsevier Science (USA)

Key Words: spinning-frequency-dependence; RFDR; SEDRA;
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INTRODUCTION

Utilization of the dipole–dipole interaction for the measure-
ments of local conformation has been a primary objective of
modern high-resolution solid state NMR. The dipolar interaction
helps to gain insight into the organization of amorphous materi-
als (1), polymers (2), organic solids (3), and biosystems (4). The
design of new dipolar recoupling techniques that can be accom-
plished conveniently and that are applicable at high magnetic
fields and under fast magic angle spinning (MAS) conditions is
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pursued continuously (5). NMR techniques utilizing MAS and rf
irradiation sequences for the determination of dipolar coupling
between homonuclear spins are constantly being refined. Tradi-
tional experiments such as R2 (6), DRAMA (7), SEDRA (8), and
RFDR (9) have been followed by improved pulse schemes such
as DRAWS (10), MELODRAMA (11), CEDRA (12), C7 (13),
RIL (14), and others (5). These techniques were developed to
increase the efficiency at which the interaction is recoupled,
reduce the influence of other interactions, and minimize pulse
imperfections.

Rotating the powder samples around an axis inclined at the
magic angle with respect to the external magnetic field averages
out the chemical shift anisotropies and the secular dipolar in-
teractions between spin-1/2 nuclei. In order to restore the dipo-
lar evolution most recoupling techniques make use of rf fields
that are applied synchronously with the sample spinning. These
rf irradiation schemes cause a disruption of the coherent aver-
aging and result in dipolar dephasing of spin polarizations or
coherences. The decaying signals are followed as a function of
the recoupling interval and are analyzed in terms of the dipolar
coupling constants. The accuracy of these dipolar coupling mea-
surements, for example between carbon nuclei, can be degraded
by incomplete heteronuclear decoupling from tightly coupled
protons (15) and by interference between the rf-fields applied
on the protons and the low-abundant spins. These additional
attenuation mechanisms of the time dependent signals compli-
cate data analysis and are associated with zero-quantum (ZQ)
relaxation (16) and other (17) types of relaxation processes.

Experiments that minimize these relaxation effects are of
practical importance for reliable distance measurements. The
idea that the spinning frequency dependence can serve as an al-
ternative for the time dependence of the recoupling was recently
suggested (17). Different approaches characterized by con-
stant time experiments were introduced. The Rotational Reso-
nance Tickling technique (18) employs rf-field variations sweep-
ing through resonance criteria. The constant-time homonuclear
dipolar recoupling method utilizes two RFDR periods that are
varied to maintain an overall constant mixing period (19). The
first period recouples the dipolar interaction and the second par-
tially refocuses the dipolar evolution in a way analogous to the
t-SEDRA experiment (20). The latter technique was used to
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study the antibody bound state of the V3 loop of the HIV-1
glycoprotein derivative (21).

Previously, a narrowband RFDR (nbRFDR) experiment was
introduced that showed a strong spinning frequency dependence
of the homonuclear dipolar recoupling efficiency (22, 23, 17)
around the rotational resonance conditions. This spinning fre-
quency dependence was utilized as an experimental variable for
measuring dipolar interactions at a fixed mixing time (17). The
decay of longitudinal magnetization differences was shown to
be sensitive to the strength of the dipolar interaction and was
employed to deduce nuclear distances. At n = 2 rotational reso-
nance conditions, where the chemical shift anisotropy is larger
than the spinning frequency, the orientation of the dipolar vector
with respect to the CSA tensor interactions could be determined.
This was used to differentiate between two crystallographic moi-
eties in terms of torsion angles in hydroxybutyric acid. The
nbRFDR approach requires only a small number of π -pulses
during each experiment and can easily be implemented in any
spectrometer. It can therefore be favorable over other techniques,
despite its lower recoupling efficiency.

A simple model was proposed to treat various relaxation
mechanisms that can interfere with the measurements, and a
procedure for relieving their effect on data analysis was sug-
gested. This procedure relied on the notion that the recoupling
period of these experiments is nearly fixed. This method for the
data analysis was only suitable for short distance measurements
with coupling constants larger than about 200 Hz.

Here we have extended the analysis of the spinning frequency
dependent nbRFDR signals to small dipolar couplings where
the relaxation processes are expected to be significant. The rate
equation describing the nbRFDR spin evolution has been reex-
amined and an improvement of the data analysis is suggested
in the next section. NbSEDRA experiments are also discussed
and guidelines for its application are presented. In the following
section examples of nbRFDR and nbSEDRA results are shown
and analyzed in terms of nuclear distances varying between 2.5
and 4.5 Å.

THE NbRFDR RATE EQUATION

Recently, we have shown (17) that nbRFDR experiments can
be interpreted by solving a rate equation describing the evolu-
tion of the zero-quantum magnetization vector m̄ (6, 16). Dur-
ing this magnetization exchange experiment on homonuclear
pairs of nuclei with spin I = 1

2 , longitudinal magnetization dif-
ferences are monitored as a function of the spinning frequency
for a fixed number (2N · l) of rotor cycles containing 2l π -pulses
with N cycles per pulse. The magnetization difference mz(�)
of a spin pair in a crystallite, with an orientation defined by the
Euler angles � ≡ (α, β, γ ) in the rotor frame, evolves according
to a nbRFDR Hamiltonian H (�; t). This Hamiltonian contains
chemical shift and dipolar terms that are modulated by the spin-

ning frequency and an rf term representing the π -pulses. The
lowest order Magnus expansion term of this Hamiltonian in the
LAR RECOUPLING 237

interaction frame of the chemical shift and rf terms has the form
(22, 23)

H̄ (�) = 1

2
|d12| cos δ12(I 1

+ I 2
− + I 1

+ I 2
−) + i

2
|d12|

× sin δ12(I 1
+ I 2

− − I 1
+ I 2

−). [1]

In this frame a rotational motion of a vector m̄(�; t) in the zero-
quantum subspace can represent the effective evolution of the
spins (6, 16). The components of this vector are proportional to
the expectation values

mx (�; t) = 〈I 1
+ I 2

− + I 1
− I 2

+〉(t)
my(�; t) = 〈I 1

+ I 2
− − I 1

− I 2
+〉(t) [2]

mz(�; t) = 〈I 1
z − I 2

z 〉(t),

and the Hamiltonian of Eq. [1] can be represented by an effective
dipolar interaction field d̄12(�) = |d12| exp{iδ12} in the trans-
verse plane of the zero quantum subspace, directed at an angle
δ12 to the x axis. For each crystallite orientation a set of polar
angles �d (�) ≡ (θd , ϕd ) exists, relating the dipolar vector to
the rotor frame at some time t = 0. The dipolar field nutates
m̄(�; t) around its axis. The size of the field vector varies from
crystallite to crystallite and therefore the nutation frequency is
different for different crystallite orientations. The total magne-
tization vector of the powder, m̄(t), decreases for an increasing
time of exposure to the nbRFDR dipolar field.

In addition to this process, the mi (�; t) components are also
influenced by a single zero-quantum relaxation rate 

ZQ
2 , when

it is assumed that a single rate constant represents the trans-
verse relaxation mechanism of all crystallites (6, 16, 17). Two
additional relaxation parameters must be taken into account to
represent the evolution of the spins. These two effective lon-
gitudinal relaxation rates 

1,2
1 reduce the expectation values of

the individual z-magnetizations 〈I 1,2
z 〉 of each pair. When they

differ in magnitude the m̄(�; t) vector becomes coupled to the
longitudinal sum-magnetization, Mz(�; t) = 〈I 1

z + I 2
z 〉(t), and

a set of coupled rate equations describes the spin evolution

d

dt
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with ±
1 = 1/2(1

1 ± 2
1) and d̄12(�) = dRe

12 + id Im
12 . This set
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of coupled equations is an extension to the rate equations for m̄
introduced previously by Levitt et al. (6). The relaxation rates
represent a combination of experimental factors, such as the
decay of the magnitudes of the magnetization components dur-
ing the finite π -pulses due to cross polarization and inefficient
heteronuclear proton decoupling during the pulse interval. The
actual T1 spin–lattice relaxation times of the spins are assumed
to be much longer than the length of the nbRFDR recoupling
period. However, they can also have some minor influence on
the values of the phenomenological 

1,2
1 parameters. The rela-

tive magnitude of the effective 
1,2
1 and the 

ZQ
2 rates can vary

significantly depending on experimental parameters.
The approximate dipolar field strength in the zero-quantum

space for a coupled spin pair has been derived previously (17,
22, 23) and has the form

d̄12(�, ωR) = 1

2

2∑
n=−2

Z12
n · K(�ω, ωR). [4]

The Z12
n coefficients are conveniently reduced to the form

Z12
±n = ω12

d · G |n| exp(±inϕd ), [5a]

with

G1 = −3

8
sin(2θm) sin(2θd )

[5b]
G2 = −3

8
sin2(θm) sin2(θd )

for vanishing chemical shift anisotropy interactions. Full ex-
pressions can be found in a previously published work (22). The
angle between the rotor axis and the external magnetic field, θm ,
is the magic angle given by tan−1(

√
2). The dipolar interaction

is affecting the expressions in Eq. [5] through its strength and
orientation. The strength is related to the internuclear distance
vector, �r12, by ω12

d = −µ0γ
2h-/4π |�r12|3 and the orientation

is defined via the angles θd and ϕd . The dependence of the
effective dipolar field on the relative magnitude of the spinning
frequency ωR with respect to the off-resonance difference �ω

of the spin pair is expressed by the sinc-function K(�ω, ωR)

K(�ω, ωR) = sinc

{
Nπ

(
n − �ω

ωR

)}
, [6]

with n = ±1, ±2, . . . . The signals that are detected during
the nbRFDR experiment are proportional to the integral of
mz(�; τm) over all crystallites at time τm = 2NτR · l. Knowing
the values of d̄12(�) and assuming the relaxation rates in Eq. [3],
the nbRFDR signal as a function of the spinning frequency can
be simulated by solving this rate equation for all crystallites.

A solution for mz(�, τm) can be easily evaluated, when the



1,2
1 relaxation rates of the two spins are equal and when for sim-

plicity we rotate the zero-quantum space so that d̄12(�) points
D VEGA

in the x direction with a magnitude equal to d12(�) = |d̄12(�)|.
In that case Eq. [3] can be reduced to

d

dt

(
my

mz

)
(�; t) =

(
−

ZQ
2 d12(�)

−d12(�) −+
1

) (
my

mz

)
(�; t) [7]

and can be solved as shown before (6, 16) for an initial condition
mz(�; 0) = 1. A similar set of equations were recently derived
by Karlsson et al. (16) using a Liouville space approach for the
description and measurement of zero-quantum relaxation effects
in rotational resonance experiments.

For |d12(�)| > 1/2|ZQ
2 − +

1 | the solution for the longitudi-
nal difference-magnetization is given by

mz(�; t) = {cos(ω12(�)t) + ε · sin(ω12(�)t)}e−Rt [8]

with

ω12(�) =
√∣∣∣∣(d12(�))2 − 1

4

(


ZQ
2 −+

1

)2
∣∣∣∣, R = 1

2

(


ZQ
2 + +

1

)
[9]

and

ε = 1/2
(


ZQ
2 − +

1

)
ω12(�)

. [10]

As long as the dipolar interaction is much larger than the dif-
ference between the relaxation rates and ε � 1, Eq. [8] can be
approximated by

mz(�; t) ∼= cos(d12(�)t) · e− 1
2

(


ZQ
2 ++

1

)
t
. [11]

For a decreasing dipolar interaction the ε-coefficient be-
comes significant and the solution of Eq. [7] for |d12(�)| <

1/2|ZQ
2 − +

1 | becomes

mz(t) = {cosh ω12(�)t + ε · sinh ω12(�)t}e−Rt . [12]

In this case the influence of the two relaxation parameters
is different in the sense that, for 

ZQ
2

∼= 0 the ε-coefficient
approaches −1 and Eq. [12] becomes mz(�; t) ∼=
exp{−(1 − (d12(�)/+

1 )2)+
1 t}, while for +

1
∼= 0 we get

that ε ∼= 1 and mz(�; t) ∼= exp{−(d12(�)/
ZQ
2 )2

ZQ
2 t}. As

expected the zero-quantum relaxation becomes undetectable
for vanishing dipolar interactions, while the single quantum
relaxation influences the signals even for d12(�) = 0.

The dependence of d̄12(�) on θd in Eq. [4] indicates that in
a powder its magnitude varies between zero and about ω12

d . For
small d̄12(�) values, mz(�, t) evolves according to Eq. [12]

and for large values the time dependence of mz(�, t) follows
Eq. [8] or even [11]. The portion of crystallites with mz(�, t)
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values that can not be approximated by Eq. [11] depends on the
relative magnitudes of the relaxation rates and ω12

d . Therefore
the total nbRFDR powder signal fd (t), that corresponds to the
solutions of the rate equations in Eq. [7], does not necessarily
follow the expression

fd (t) ∼= 1

8π2
e−Rt

∫
d� cos(d12(�)t), [13]

at the rotational resonance condition for large ω12
d values, as was

already noted before (15). For some fixed time τm = 2NτR · l and
withω12

d τm ≥ 2π many of the individual m̄(�, t) vectors perform
large precession angles up to t = τm and their z-components in-
terfere destructively. Thus the mz(�; τm) values of only those
crystallites that exhibit small d12(�) values contribute construc-
tively to the observed nbRFDR signals. At rotor frequencies far
from the rotational resonance condition most crystallites are in
the small d12(�) regime and therefore are hardly dependent on


ZQ
2 .
The overall ωR-dependent nbRFDR signal is thus dependent

on 
ZQ
2 , only near the resonance criterion, while +

1 influences
the signal significantly everywhere. As a result, and as will be
shown in the following section, the effect of zero-quantum re-
laxation on the powder nbRFDR curves will only be consid-
ered in cases where its rate is suspected to be significantly high.
When ω12

d > +
1 again most of the crystallites evolve accord-

ing to Eq. [11] and their nbRFDR signals interfere destructively,
leaving the main contribution to the nbRFDR decay from small
d12(�) values. The crystallites with those d12(�) values show a
significant decay according to Eq. [12] and

mz(t) ∼= ed2
12/+

1 t e−+
1 t . [14]

Far from rotational resonance all crystallites follow Eq. [14] and
the powder signal is principally dependent on +

1 :

f (t) ∼= e−+
1 t . [15]

At this point we conclude that the influence of relaxation times
on the nbRFDR curves is predominantly governed by the +

1
mechanism. As we will show, the methodology of analysis sug-
gested in Ref. (17) is only valid for relatively large ω12

d /2π

values with respect to the relaxation parameters.
In actual nbRFDR experiments we measure the individual

signals of the two spins separately. Thus instead of the powder
signal f (t) two signals are measured given by

f1,2(t) = 1

8π2

∫
d�(Mz(�, t) ± mz(�, t)). [16]

With the initial conditions mz(�, 0) = 1, Mz(�, 0) = 0, and
−
1 = 0 both signals evolve according to f1(t) = − f2(t). This

is not the case when the longitudinal relaxation times differ and
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−
1 �= 0. Then the rate equation in Eq. [2] cannot be reduced

to Eq. [7] and the set of four coupled equations must be solved.
An analytical solution for these equations can be derived; yet,
it does not give more insight than numerical solutions. Exam-
ples of spin pairs that exhibit different 1 values are shown in
following sections.

Up to this point we have shown that the simplified expression
for the nbRFDR curve in the form fd (ωR ; τm) = c · f 0

d (ωR ; τm),
where c represents a relaxation parameter and where f 0

d (ωR ; τm)
represents the relaxation-free nbRFDR decay curve, is not al-
ways sufficient to analyze experimental data. For dipolar inter-
actions ω12

d � 1/2|ZQ
2 − +

1 |, c-coefficients can be found to
fit the data around the rotational resonance conditions, as was
shown previously (17), but they are not primarily governed by


ZQ
2 . An improved simulation procedure must therefore be sug-

gested to calculate nbRFDR curves over the whole ωR range
and for all values of ω12

d . In the next section we will do so and
describe the methodology used to analyze our data.

SIMULATIONS

To quantify the effect of relaxation on the nbRFDR signals
and to simulate experimental nbRFDR curves numerical cal-
culations were performed varying the dipolar coupling and the
different relaxation parameters. The expressions for d̄12(�, ωR)
given here in Eq. [4] and in Eq. [15] of Ref. (17), which were
derived from a zero-order average Hamiltonian, and their inser-
tion into the rate equation of Eq. [3] did not produce sufficiently
accurate nbRFDR curves f 0

d (ωR ; τm). Comparing single crys-
tallite average Hamiltonian simulations with numerical simula-
tions, using stepwise integration of the Liouville von-Neuman
equation, showed discrepancies between the exact spin evolu-
tion and the zeroth order average Hamiltonian results for long
mixing times. This discrepancy, originating from higher order
terms, was intensified when powder averages were calculated.
We therefore extracted the value d12(�, ωR) for each crystal-
lite orientation and spinning frequency from exact 4 × 4 density
matrix calculations of m0

z (�, ωR ; t). For each set of parame-
ters (�, ωR), nbRFDR signals m0

z (�, ωR ; t) were calculated as
a function of l, with t = 2NτR · l, taking into account dipolar,
CSA, and rf parameters of the experiment. The main frequency
component of this time dependent signal, obtained by Fourier
transformation, was then set equal to d12(�, ωR) and was in-
serted into Eq. [3]. Solving this rate equation for L different
crystallite orientations as a function of ωR and for a set of 

ZQ
2

and +
1 parameters yielded the values mz(�, ωR ; τm). A summa-

tion of all these values over the L discrete crystal orientations,
produced the powder nbRFDR signal:

∑

f (ωR ; τm) =

L
i

mz(�i , ωR ; τm). [17]
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FIG. 1. (a) Individual contributions to a powder nbRFDR signal from
m0

z (�, τm ) and mz(�, τm ) components (multiplied by 103) as a function of the
effective dipolar coefficient d12(�). They were calculated for a spin pair with
νd = 100 Hz and �δ = 8750 Hz at νR = 8800 Hz using {l, N } = {4, 16} and
τm = 3.6 ms. The solid line corresponds to m0

z (�, τm ) calculated without relax-
ation; the (+) symbols correspond to mz(�, τm ) with λ

ZQ
2 = 0 and λ+

1 = 5 Hz

and the (×) symbols correspond to mz(�, τm ) with λ
ZQ
2 = 5 Hz and λ+

1 = 0
as a function of the single crystallite d12(�). (b) Powder nbRFDR curves of
the same spin system are simulated with relaxation parameters {λZQ

2 , λ+
1 } equal

to {0, 0} Hz (solid line), {5, 0} Hz (dashed line), and {0, 5} Hz (dotted line)
and plotted as a function of the spinning frequency varying between 8200 and
9350 Hz.

For convenience the following frequency variables are defined
in units of Hertz: �δ = �ω/2π, νd = ω12

d /2π, νR = ωR/2π,

λ+
1 = +

1 /2π , λ
ZQ
2 = 

ZQ
2 /2π . In Fig. 1a, the individual

m0
z (�, τm) and mz(�, τm) components evaluated at νR =

8750 Hz close to the n = 1 rotational resonance condition, with
N = 16 and l = 4 and at a spinning frequency νR = 8800 Hz
are shown as a function of their d12(�) values for νd = 100 Hz.
The relaxation-free results m0

z (�, τm) are compared with results
mz(�, τm) that were obtained by taking into account the relax-

ZQ + ZQ
ation parameters: (i) λ2 = 0 and λ1 = 5 Hz and (ii) λ2 = 5 Hz
and λ+

1 = 0. The differences between these two cases are very
ND VEGA

pronounced around d12(�) = 0. The single quantum relaxation
reduces the magnetization of the crystallites considerably as op-
posed to the ZQ mechanism that has no attenuating effect in
this regime. Powder integration of these results calculated for
variable ωR gave rise to the powder nbRFDR curves in Fig. 1b
that for case (i) are lower and for case (ii) are higher than the
relaxation free curve. The influence of 

ZQ
2 on nbRFDR curves

becomes much less pronounced when ω12
d increases. Thus for

most of the range of observable dipolar couplings, ZQ relaxation
can be ignored. We found numerically that a ZQ-relaxation rate
that is 20 times smaller than the dipolar interaction results in
a nbRFDR decay that deviates from the relaxation-free one by
about 10%. For small interactions νd

∼= 100 Hz, a ZQ-relaxation
time of 33 ms, corresponding to λ

ZQ
2 = 5 Hz, yields a nbRFDR

decay that fits relaxation-free curves of about {νd − 10} Hz, re-
sulting in an estimated nuclear distance that deviates from its
actual value by ∼0.15 Å.

DATA ANALYSIS

In practice the values of the relaxation parameters are highly
dependent on the experimental setup and the rf characteristics
of the spectrometer. The experimental nbRFDR data, S(ωR ; τm),
must be fitted to calculated curves fd (ωR ; τm) that are cor-
rected for these effective relaxation mechanisms. A possible
way of data analysis, suggested in Ref. (17), is to multiply the
experimental curves S(ωR ; τm) by a constant that is equal to
c1 = 1/c = exp{eff

1 τm} and that compensates for the effect of
relaxation:

f 0
d (ωR ; τm) = c1 · S(ωR, τm). [18]

From the above discussion it follows that c1 is mainly deter-
mined by +

1 . In Fig. 2, examples of model curves fd (ωR ; τm) ≡
S(ωR ; τm) (empty circles) for (a) νd = 400 Hz, λ+

1 = 5 Hz and
(b) νd = 100 Hz, λ+

1 = 5 Hz are compared with their corre-
sponding f 0

d (ωR ; τm) (solid lines) curves. For the strong dipolar
case a value of c1 = 1.19, with 

eff
1 /2π = 7.5 Hz was used

to generate c1 · fd (ωR ; τm) (filled circles). This correction re-
sulted in a reasonable good fit to f 0

d (ωR, τm) around the rota-
tional resonance condition. However, away from this condition
the corrected curve deviates from the relaxation-free curve. This
procedure is satisfactory for analyzing data of relatively small
relaxation rates. When these rates are substantial with respect
to the dipolar coupling the correction in Eq. [18] is no longer
valid and it is necessary to include the +

1 and 
ZQ
2 relaxation

parameters explicitly.
It is thus necessary to follow a more accurate fitting proce-

dure. This can be achieved when experimental data are mea-
sured at ωR values far from the rotational resonance condition.
There no recoupling occurs and the data are solely governed

by exp{−1 τm}, as given in Eq. [15], making it possible to de-
duce the value of +

1 . This value can then be inserted in the
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FIG. 2. Simulated nbRFDR decay curves, fd (νR, τm ), of spin pairs with
(a) νd = 400 Hz and (b) νd = 100 Hz and both with �δ = 8750 Hz, using
{l, N } = {2, 8} and {l, N } = {4, 16}, respectively. The solid lines f 0

d (νR, τm )
were simulated without taking relaxation into account. The empty symbols in
both figures were evaluated with relaxation rates {λZQ

2 , λ+
1 } equal to {0, 5} Hz.

The filled symbols are normalized nbRFDR decay curves equal to c1 · fd (νR, τm )
(see Eq. [18]) with c1 = 1.19 in (a) and c1 = 1.66 in (b). As illustrated in
(b) this normalization procedure fails to predict relaxation effects for small
dipolar couplings.

rate equation in Eq. [3] together with the d12(�, ωR) values ob-
tained as discussed above. The resulting fd (ωR ; τm) curve must
then be fitted to the experimental S(ωR ; τm). When 

ZQ
2 becomes

significant it has to be included in the simulations as a fitting pa-
rameter, together with ω12

d . When no data are available far from
the rotational resonance condition, both relaxation rates must be
considered as fitting parameters.

In general the initial condition of the coupled pair does not
obey S1(ωR ; 0) = −S2(ωR ; 0) exactly and the analysis of experi-
mental nbRFDR data requires normalization of the initial state
as discussed previously (17). When both spins are high abun-

dant and both nbRFDR signals of the coupled spins are detected
together with S1(ωR ; 0) and S2(ωR ; 0) the experimental data can
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be corrected according to

Fi (ωR ; τm)

= Si (ωR ; τm) − (1/2)(Si (ωR ; 0) + Sj (ωR ; 0))

(1/2)(Si (ωR ; 0) − Sj (ωR ; 0))
[19]

for i, j = 1, 2.

When one of the spins, with signal S1(ωR ; τm), is a high-abundant
spin and the other is a natural-abundant spin, the nbRFDR dipo-
lar decay is only measured on the latter spin. Its experimental
function still requires that both S1(ωR ; 0) and S2(ωR ; 0) are de-
tected in order to evaluate

F2(ωR ; τm) = S2(ωR ; τm) − (1/2)(S2(ωR ; 0) + x S1(ωR ; 0))

(1/2)(S2(ωR ; 0) − x S1(ωR ; 0))

[20]

with x the relative abundance of the low abundant spin. As long
as the Fi (ωR ; τm) data are available far off the rotational reso-
nance condition we can extract the values for 1

1 and 2
1. These

values are then used to evaluate theoretical fd (ωR ; τm) curves
for different ω12

d values, solving Eq. [3] and using Eq. [17]. In
cases where only F2(ωR ; τm) is available we have assumed that
1

1 = 2
1. Only when the fi (ωR ; τm) curves could not be fit

to Fi (ωR, τm) with 
ZQ
2 = 0, did we introduce ZQ-relaxation

parameters into the simulations.

SPINNING FREQUENCY DEPENDENT NbSEDRA

It is also possible to carry out narrowband SEDRA (nbSE-
DRA) experiments similar to the nbRFDR experiments just dis-
cussed. This experiment constitutes the same recoupling pulse
sequence and therefore the same Hamiltonian as the nbRFDR
experiment but involves dephasing of transverse magnetization
rather then a decay of the difference-magnetization of the spin
pair. Consequently, it recouples the dipolar interaction less effi-
ciently. The nbRFDR simulations require inclusion of relaxation
in rate equations describing spin dynamics, nbSEDRA simula-
tions on the other hand require a simple multiplication of the
powder calculations by a relaxation factor. Additionally, the de-
gree of signal dephasing of each of the nuclei can be analyzed
separately without knowing the coherent state of the other nu-
cleus.

In the ideal nbRFDR case, all spin pairs are initially prepared
in a state ρ(0) = A(I 1

z − I 2
z ) and the density operator evolves

according to the Hamiltonian given in Eq. [1] with δ12 = 0 as

ρ(t) = A
(
I 1

z − I 2
z

)
cos(d12(�, ωR)t) + i A(I 1

+ I 2
− − I 1

− I 2
+)

× sin (d12(�, ωR)t). [21]
In nbSEDRA, the same recoupling pulse sequence is executed
just after a cross-polarization excitation of the spins starting at
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FIG. 3. The narrowband SEDRA pulse sequence: A cross polarization is
followed by a set of π pulses, each pulse in the middle of a fixed period equal to
a multiple number of rotor cycles NτR . For N = 1 this experiment becomes a
simple broadband SEDRA experiment (8). The signal is acquired after 2l pulses
as a function of the spinning frequency instead of incrementing the contact
period. The nbRFDR pulse sequence involves additional π/2 pulse after cross
polarization, followed by a DANTE inversion interval and a delay without proton
decoupling and a π/2 detection pulse after the mixing time.

a state ρ(0) = A(I 1
x + I 2

x ), as shown in Fig. 3. In this nbSEDRA
experiment the coherences 〈I 1

x 〉(�, ωR ; τm) and 〈I 2
x 〉(�, ωR ; τm)

are measured as a function of the spinning frequency for a mixing
time τm = l · 2NτR . The effective spin evolution of the density
operator yields

ρ(t) = A

{
I 1

x cos

(
1

2
d12(�)t

)
+ i

(
I 1

z I 2
+ − I 1

z I 2
−
)

× sin

(
1

2
d12(�)t

)}
+ A

{
I 2

x cos

(
1

2
d12(�)t

)

+ i
(
I 1
+ I 2

z − I 1
− I 2

z

)
sin

(
1

2
d12(�)t

)}
. [22]

Just as in the nbRFDR experiment the density matrix compo-
nents are exposed to relaxation mechanisms. However, since all
linear spin operators in Eq. [22] are single quantum coherence
operators, it is reasonable to assume that they decay according to
some spin–spin relaxation times. The influence of experimental
parameters will mostly manifest themselves in a shortening of
these times. By assuming that the T2-type of relaxation times
are equal for all crystallites and that two relaxation parameters
are sufficient to describe the nbSEDRA decays, the nbSEDRA
powder signals can be written as

f1,2(ωR, τm) = e−τm/T
eff(1,2)

2 ×
∫

d�
〈
I 1,2

x

〉
(�, ωR ; τm)

= k1,2 × f 0
1,2(ωR, τm) . [23]

Fitting the experimental nbSEDRA curves S1,2(ωR ; τm) requires
a single relaxation parameter k1,2 for each spin, in addition to
ω12

d and the chemical shift parameters of the spin pair, which are

needed for the simulations of the f 0

1,2(ωR ; τm) curves. Thus each
nbSEDRA signal can be individually analyzed and the simulated
D VEGA

curves can be obtained without solving rate equations similar to
Eq. (3).

Examples of nbSEDRA curves f 0
1,2(ωR ; τm) covering a dipo-

lar coupling range of 350–600 Hz are illustrated in Fig. 4. In these
calculations a chemical shift difference of �δ = 10160 Hz and
spinning frequencies ranging between νR = 10300–11200 Hz
(Fig. 4a) and νR = 4725–5075 Hz (Fig. 4b) were used. Similarly,
in Fig. 5 nbSEDRA curves covering a coupling range of 50–
300 Hz are shown for �δ = 11100 Hz. In these calculations the
spinning frequency was varied between νR = 10550–11050 Hz
(Fig. 5a) and νR = 5275–5525 Hz (Fig. 5b). For the larger
dipolar couplings the values of (l, N ) that were chosen are (2,
16) around the n = 1 and (2, 12) around the n = 2 rotational res-
onance criterion. Likewise, for the smaller couplings regime the
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FIG. 4. Theoretical decay curves of nbSEDRA experiments on a spin pair
with a dipolar coupling ranging between (top) 350 and (bottom) 600 Hz are
plotted as a function of the difference between �δ and the spinning frequency.
In (a) simulations using {l, N } = {2, 16} near the n = 1 R2 condition are
depicted and in (b) simulations using {l, N } = {2, 12} near the n = 2 R2

condition are shown. Adjacent curves in the figures have dipolar couplings that
are 50 Hz apart. The isotropic chemical shift difference used in these calculations

was �δ = 10,160 Hz and the CSA interactions were set to zero as well as the

relaxation rate λ
eff
2 .
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FIG. 5. Theoretical decay curves of nbSEDRA experiments on a spin pair
with a dipolar coupling ranging between 50 and 300 Hz are plotted as in Fig. 4.
In (a) pulse parameters {l, N } = {4, 24} near the n = 1 R2 condition were used
and in (b) pulse parameters {l, N } = {4, 16} near the n = 2 R2 condition were
used in the calculations. Adjacent curves in the figures have dipolar couplings
that are 50 Hz apart. Neither CSA interactions nor relaxation parameters were
considered.

values of (l, N ) chosen are (4, 24) and (4, 16) for n = 1 and n = 2,
respectively. When nbSEDRA signals persist for times as long
as 30 ms nuclear distances up to about 5 Å can be determined.

INTERMOLECULAR DIPOLAR COUPLINGS

Additional dipolar dephasing can be promoted by interac-
tion of the spin pair with magnetically equivalent spins on
neighboring molecules. In such cases, the powder nbRFDR and
nbSEDRA curves are expected to decay faster due to this inter-
molecular interaction. To illustrate this effect we have consid-
ered a Ca–Cb carbon spin pair with a coupling of 90 Hz, and
added a supplementary Cb′ carbon that is magnetically identi-
cal to Cb at a Ca–Cb′ distance of 5.0 Å (60 Hz). NbRFDR and

nbSEDRA curves f 0

d (ωR ; τm) for the Ca spin were calculated
using a three-spin system in the SIMPSON (28) program for
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different positions of the Cb′ carbon. The location of this carbon
with respect to the Ca–Cb spin pair is defined by the polar an-
gles (βab′ , γab′ ) of the distance vector r̄ab′ in the principal axis
system of the CSA-tensor of Ca . In Fig. 6, f 0

d (ωR ; τm) func-
tions calculated for both narrowband experiments are depicted.
A comparison between the Ca–Cb (solid lines) and Cb′–Ca–Cb

(symbols) decay curves reveals a more pronounced effect of the
third spin on the nbRFDR (top) curve than on the nbSEDRA
(bottom) curve. In the nbRFDR case the additional spin would
alter the best-fit parameters for f 0

2 (ωR ; τm) from a coupling of
90 to 120 Hz.
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FIG. 6. The effect of intermolecular couplings on the measurement of
weak dipolar couplings in nbRFDR and nbSEDRA experiments. Dipolar de-
cay curves (solid line) of a Ca spin that is coupled by 90 Hz (4.4 A

❛

) to a Cb spin
are compared with decay curves (symbols) of the same spin that is addition-
ally coupled by 60 Hz (5.0 A

❛

) to an intermolecular Cb′ spin that is magnetically
equivalent to Cb . NbRFDR decay curves plotted in (a) were obtained using pulse
parameters {l, N } = {4, 16} and nbSEDRA decay curves plotted in (b) were ob-
tained using {l, N } = {4, 24}. Simulations were carried out using different polar
angles [βab′ , γab′ ] of the dipolar vector of r̄ab′ in the CSA PAS frame of Ca .
Results for selected orientations with [βab′ , γab′ ] = [0, 90] (empty circles) and
vector were [βab, γab] = [60, 90] and the Ca CSA parameters were ωC S A =
5 kHz and η = 0.95 in these calculations.
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SELECTIVE DANTE INVERSION

The initial state of the nbRDFR magnetization exchange ex-
periment on a spin pair is prepared by selectively inverting one of
the spins. In our case, we accomplished this with the application
of a DANTE pulse sequence (25) on the high-abundant carboxyl
or carbonyl carbons in the samples. These carbons have CSA
tensors (∼75 ppm) that exhibit sidebands in their MAS spectra
and that must be inverted together with their centerbands. We
employed 32 equally spaced pulses of about 5.625◦ each during
two rotor periods. Despite the large CSA parameters the selec-
tive inversion worked reasonably well. For example, to achieve
optimal inversion of the carbonyl carbon in leucine at a spinning
frequency in the range νR = 4–8 kHz the length of the DANTE
pulses was extended by about 5% to 5.9◦. Small changes in the
initial polarization at different offset values induced by the CSA
parameters can be expected. This indicates that experimental
optimization is necessary to obtain efficient inversion and that
an accurate detection of the S1,2(ωR ; 0) signals must be carried
out in conjunction with the S1,2(ωR ; τm) measurements.

MATERIALS AND EXPERIMENTAL METHODS

DL-3-Hydroxybutyric acid (HBA) 1,3-13C2 sodium salt was
purchased from Isotec Inc. (Matheson–Trigas, Miamisburg,
OH). A polycrystalline sample of L-[1-13C,15N]-leucine was
purchased from Cambridge Isotope Labs (Andover, MA). In
this sample the leucine molecules are labeled at the carboxyl
carbons and the amine nitrogen. A selectively labeled peptide
Leu-Gly-Phe (LGF) was synthesized by Dr. Ingolf Sack (26).
This molecule was synthesized manually by an Fmoc strat-
egy, using L-[1-13C,15N]-leucine, [2, 2-d2]-glycine and L-[15N]-
phenylalanine. The isotopes were enriched by 98% at least. Ex-
periments on all samples were carried out on a Bruker DSX300
spectrometer equipped with a 4-mm double-tuned WB MAS
probe. The nbSEDRA pulse scheme is shown in Fig. 3 and the
nbRFDR pulse scheme was given elsewhere (17). The rf field
exerted on the protons during the π /2 pulse was 90 kHz. During
the cross polarization (CP) period the field was ramped from 43
to 86 kHz. During the TPPM decoupling period and throughout
the rest of the experiment the field was 92.5 kHz. Efficient CP
was attained using a 13C-irradiation field of 65 kHz with a con-
tact time of 1 ms for the leucine sample, 4 ms for the LGF sample,
and 2 ms for the HBA sample. Carbon dipolar recoupling was
achieved using π pulses of 90 kHz. The nbRFDR experiments
included an additional π /2 flip-back pulse of 2.7 µs, a selective
DANTE inversion sequence followed by a coherence dephasing
period of 8 rotor periods without proton decoupling, and a π/2
detection pulse again of 2.7 µs, as explained previously (17).
The DANTE inversion scheme was composed of 32 pulses of
0.29 µs at a power level of 65 kHz applied over an interval of 2τR .
Experiments on the leucine sample were performed at spinning

frequencies of 10,450–11,000 Hz near the n = 1 condition and
at spinning frequencies of 4800–5500 Hz near the n = 2 con-
D VEGA

dition. Similarly, nbRFDR and nbSEDRA experiments on the
tripeptide were conducted at spinning frequencies varying in
the 11,550–10,800 and 11,200–10,100 Hz ranges, respectively.
Spinning frequencies were stabilized to within ±1 Hz. The π -
pulses on the carbons were phase-cycled according to the XY-4
and XY-8 phase cycling schemes (27).

Simulations of the nbRFDR and nbSEDRA experiments were
carried out using the SIMPSON simulation package for solid
state NMR (28) considering all CSA parameters, dipolar cou-
pling parameters, isotropic chemical shifts and pulse lengths,
phases, and amplitudes. A short Matlab (29) program was writ-
ten to calculate single crystallite and powder signals stemming
from the rate equations presented in Eq. [3]. This program diag-
onalizes the relaxation matrix of the rate equation and calculates
mz(�, ωR ; τm) and f1,2(ωR, τm). The CSA values of the leucine
carboxyl carbon reported before (30) were used and were con-
firmed in a slow spinning CPMAS experiment.

RESULTS AND DISCUSSION

NbRFDR Measurements of Hydroxybutyric Acid

In Ref. (17) we discussed the analysis of nbRFDR exper-
iments on the two high abundant carbon nuclei in 1,3-13C2-
hydroxybutyric acid (HBA). The 13C MAS spectrum (see insert
in Fig. 7a) of this molecule contained two C–OH lines, (1) at
64.1 ppm and (2) at 61.5 ppm, and a COOH line at 180.0 ppm.
It was shown that the hydroxyl carbon lines correspond to two
conformations of the HBA molecule in the powder sample and
that the nuclear distance between the two abundant carbons is
the same in both types. The analysis of the nbRFDR data, ob-
tained around the n = 1 rotational resonance (R2) condition
with (N , l) = (8, 2) and τm = 3.7 − 4.0 ms, resulted in a car-
bon distance of 2.5 ± 0.1 Å. The approach undertaken in (17)
to analyze the data has been extended as discussed above and as
demonstrated here. For that purpose the experimental nbRFDR
function, FCOOH(νR ; τm) of the COOH line and FC–OH(νR ; τm)
of the C–OH lines were rederived. The latter function is given
by the average of the individual normalized F-curves of the two
C–OH lines

FC–OH(νR ; τm )

= 1

2

∑
i=1,2

S(i)
C–OH(νR ; τm ) − (1/2)

(
S(i)

C–OH(νR ; 0) + (1/2)SCOOH(νR ; 0)
)

(1/2)
(

S(i)
C–OH(νR ; 0) − (1/2)SCOOH(νR ; 0)

) ,

and FCOOH(νR ; τm) is normalized according to

FCOOH(νR ; τm)

=
∑
i=1,2

SCOOH(νR ; τm) − ((1/2)SCOOH(νR ; 0) + S(i)
C–OH(νR ; 0))

(1/2)SCOOH(νR ; 0) − S(i)
C–OH(νR ; 0)

.

These experimental values are plotted in Fig. 7a as a function
of �δ − νR , where �δ is the difference between the COOH line
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FIG. 7. (a) Experimental nbRFDR F(νR ; τm ) values using {N , l} = {8, 2}
near the n = 1 R2 condition of the (empty squares) carboxyl carbon and (empty
circles) hydroxyl carbon in the HBA molecule are compared with simulated
fd (νR, τm ) curves using parameters (νd , λ+

1 , λ−
1 , λ

ZQ
2 ) equal to (500, 3, 2, 0) Hz.

The 13C CPMAS spectrum of HBA after the selective inversion of the carboxyl
carbon spectrum is shown in the insert. The carbonyl sidebands are marked with
a star. (b) Experimental nbRFDR results near the n = 1 R2 condition of the two
Cβ lines in leucine using {l, N } = {2, 12}. The C (1)

β data at (circles) 37.6 ppm
and the C (2)

β data at (squares) 39.3 ppm are plotted each with respect to its own
�δ(i) value with i = 1, 2. The simulated curves (solid lines) were obtained using
νd = 450, 500, 550 Hz and (λ+

1 , λ
ZQ
2 ) equal to (5, 0) Hz. The CPMAS spectrum

of leucine after the selective inversion of the carboxyl carbon spectrum is shown
in the insert.

position and the average line position of the C–OH carbons.
These results are fitted to the simulated curves fd (νR ; τm) =
(1/2)( f (1)

d (νR ; τm)+ f (2)
d (νR ; τm)) for the C–OH and the COOH

carbons. It is clearly seen from the data in this figure that the
two F(νR ; τm) curves differ significantly and therefore different
values for λ1

1 and λ2
1 must be considered in the relaxation model.

Thus to fit the data λC–OH
1 = 2.5 Hz, corresponding to a relax-

ation time of 64 ms, and λCOOH
1 = 0.5 Hz, corresponding to a
relaxation time of 318 ms, were used. These values were deduced
from the measurement at an off-R2 frequency of νR = 7.8 kHz.
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With these λ1 values and λ
ZQ
2 = 0, the f (νR ; τm) curves (solid

lines) using νd = 500 Hz exhibit the best agreement with the
experimental data. This analysis resulted in an accurate deter-
mination of an internuclear distance of 2.48 ± 0.05 Å that is
in agreement with the known distance of 2.48 Å obtained from
X-ray diffraction data (31). Not only did the rate equation model
allow a good prediction of the nbRFDR dipolar decay over the
whole range of spinning frequencies, it also increased the accu-
racy of the nuclear distance measurement.

NbRFDR and NbSEDRA Measurements of Leucine

To show the feasibility of measuring nuclear distances be-
tween a high abundant 13C and its neighboring natural abun-
dant carbons (32) nbRFDR and nbSEDRA experiments were
performed on a polycrystalline L-[1-13C,15N]-leucine sample.
The 13C spectrum following a DANTE inversion (see insert in
Fig. 7b) of this sample shows two inverted lines (at 173.3 and
172.3 ppm) of the high abundant carboxyl carbon (COOH), one
α-carbon (Cα) line (at 49.8 ppm) and two β-carbon (Cβ) lines (at
39.3 and 37.6 ppm). Additionally, it shows a line composed of the
overlapping γ -carbon (Cγ ) and δ-carbons (Cδ1,δ2) at 21.3 ppm.
This spectrum indicates that there are two conformations (1),
(2) for the same molecule in the sample. NbRFDR experiments
were carried out near the n = 1 rotational resonance condition
using {l, N } = {2, 12} and the signals Sβ(νR, τm) of the natural
abundance Cβ lines were collected. The assignment of the two
coupled COOH–Cβ spin pairs was achieved by comparing the
relative intensities of the lines and confirmed by plotting the
Fβ(νR ; τm) curves of the two Cβ lines as a function of �δ − νR ,
for the two possible values of �δ of each line.

The experimental nbRFDR function Fβ(νR ; τm), with x =
0.01 in Eq. [20], for the two sites is shown in Fig. 7b as a func-
tion of �δ(i) − νR , with i = 1, 2. The results suggest that the two
types of molecules generate a common nbRFDR curve, in-
dicating that they posses the same COOH–Cβ distance. The
less shielded carboxyl resonance C (1)

OOH is coupled to the more
shielded β-carbon C (1)

β , and the more shielded carboxyl-carbon
C (2)

OOH is coupled to the less shielded β-carbon C (2)
β . The isotropic

shift differences of the two pairs are �δ(1) = 135.7 ppm and
�δ(2) = 133 ppm. The simulated data, using a dipolar interaction
of 500 Hz (r = 2.48 Å) and a relaxation parameter λ+ = 5 Hz
produced a good fit to the experimental data with an accuracy
of the dipolar coupling that is ±50 Hz (±0.08 Å). No ZQ-
relaxation was used in these calculations.

NbSEDRA data in the vicinity of the n = 1 and the
n = 2 rotational resonance conditions, with {l, N } = {2, 16} and
{l, N } = {2, 12}, respectively, were also acquired. The line in-
tensities of the Cβ signals were divided by the correspond-
ing signal intensities detected immediately after proton–carbon
cross-polarization to give the normalized experimental nbSE-
DRA function G(ωR ; τm). The data far from the rotational

resonance condition were used to estimate the T eff(i)

2 values.
The simulated f 0

β (ωR ; τm) curve, for νd equal to 475 ± 15 Hz,
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FIG. 8. NbSEDRA experiments on the C (1)
β carbon (circles) in leucine were

acquired with {l, N } = {2, 16} close to the n = 1 R2 condition and with {l, N } =
{2, 12} close to the n = 2 R2 condition and are plotted in (a) and (b), respectively.
In (a) the simulated nbSEDRA curve (solid line), obtained by using νd = 475 Hz
and k(1) = 0.56, is fitted to the experimental data, G(νR ; τm ). In (b) simulations
using νd = 475 Hz and k(1) = 0.45 are fitted to the experimental results by
varying the torsion angle 0 ≤ � ≤ 2π between the Cβ–Cα and the COOH = O
bonds. Only the maximal (thin line) nbSEDRA curve with ψ = 90◦ and the
minimal (thick line) nbSEDRA curve with ψ = 190◦ are shown.

was multiplied by factors k(i) = exp(−τm/T eff(i)
2 ), with T eff(1)

2 =
10.4 ms and T eff(2)

2 = 8.65 ms. The resulting f (i)
d (ωR ; τ ) curves

fit the experimental data quite well as shown in Figs. 8a and
9a. The obtained coupling strength corresponds to an internu-
clear distance of r = 2.52 ± 0.03 Å that agrees well with the
nbRFDR measurements and the distance deduced from previous
X-ray diffraction work (33).

The nbSEDRA data and their fitted simulations near the
n = 2 condition are shown in Figs. 8b and 9b. In the evalu-
ation of the d12(�, ωr ) coefficients the principal values of the
carboxyl CSA tensor were taken into account, while those of
the β-carbon were small enough to be neglected. The princi-
pal axes system (PAS) of the CSA tensor was chosen according

to a previous study (34) with its z axis perpendicular to the
sp2 plane of the carboxyl group and its y axis in the direction
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of the COOH–Cα bond. The position of the β-carbon was de-
fined by the torsion angle � between the Cβ–Cα bond and the
COOH = O double bond. This angle determines the polar angles
(θd , ϕd ) of the COOH–Cβ vector in the CSA PAS of the COOH car-
bon. NbSEDRA data are plotted together with the k(i) f 0

d (ωR ; τm)
curves for νd = 475 Hz in Figs. 8b and 9b using T eff(1)

2 =
11.8 ms and T eff(2)

2 = 9.3 ms, respectively. In the simulations
the torsion angle was varied and a range of curves were ob-
tained. The minimal dephasing curve was obtained for � = 90◦

and the maximal dephasing curve was obtained for � = 190◦.
The extreme dephasing curves were selected from calcula-
tions varying 0 ≤ � ≤ 360 in ±10◦ steps. The simulations using
� ∼= 90(±15)◦ describe best the experimental data for both Cβ

species. The value for this torsion angle derived from previous
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FIG. 9. NbSEDRA experiments on the C (2)
β (squares) in leucine were ac-

quired with {l, N } = {2, 16} close to the n = 1 R2 condition and with {l, N } =
{2, 12} close to the n = 2 R2 condition and are plotted in (a) and (b), respec-
tively. In (a) the simulated nbSEDRA curve (solid line), obtained by using νd =
475 Hz and k(2) = 0.50, is fitted to the experimental data, G(νR ; τm ). In (b)
simulations using νd = 475 Hz and multiplied by k(2) = 0.36 are fitted to the
experimental results by varying the torsion angle 0 ≤ � ≤ 2π between the Cβ–

Cα and the COOH = O bonds. Only the maximal (thin line) nbSEDRA curve
with ψ = 90◦ and minimal (thick line) nbSEDRA curve with ψ = 190◦ are
shown.
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FIG. 10. In (a) are plotted the experimental nbRFDR F(ωR ; τm ) data of
the glycine CG

α carbon (symbols) in the singly 13C-labeled LGF peptide that
were acquired with {l, N } = {2, 16} near the n = 1 R2 condition. A simu-
lated curve (solid line) obtained by using (νd , λ+

1 , λ
ZQ
2 ) equal to (500, 0, 0) Hz

is also shown. The primary structure of the tripeptide is shown as an insert.
In (b) experimental nbRFDR F(ωR ; τm ) data of the leucine C L

α carbon (symbols)
in the tripeptide acquired also with {l, N } = {2, 16} near the n = 1 R2 condi-
tion are plotted. Simulated curves using (νd , λ+

1 , λ
ZQ
2 ) equal to (1790, 10, 0) Hz

(thin line) and (1790, 10, 100) Hz (thick line) are also shown.

crystallographic studies (33) is 90(±4)◦, depending on the spe-
cific study.

The two Cβ conformers have distinguishable isotropic chem-
ical shifts yet this is not manifested by � torsion angle differ-
ences. Presumably these differences are determined by confor-
mation changes at the γ - and δ-carbon positions. The positions
of these side-chain carbons could not be determined by
nbSEDRA experiments, because they exhibit overlapping lines
in the CPMAS spectrum.

NbRFDR and NbSEDRA Measurements of LGF
Both nbRFDR and nbSEDRA experiments were performed
on an LGF sample (see insert in Fig. 10a), 13C enriched only
LAR RECOUPLING 247

at the carbonyl position of the leucine, in order to detect the
interaction magnitudes between this abundant carbon and the
natural abundant α, β, γ , and δ-carbons C L

α−δ of leucine and
the α-carbon CG

α of glycine. In the analysis of the data the effec-
tive relaxation rate, λ2

1, of the enriched carbon was taken equal to
that of the interacting carbon, thus λ−

1 = 0 for all cases. The
γ -carbon and the δ-carbons of the leucine residue are well re-
solved in the CPMAS NMR spectrum of the peptide, permitting
an analysis of its side-chain structure. The less-shielded and the
more-shielded δ-carbons are denoted by C L

δ(1) and C L
δ(2), respec-

tively.

Measurements on Adjacent Carbons

NbRFDR results aimed at measuring the distance between
the labeled carbonyl carbon and the adjacent carbons are shown
in Figs. 10 and 11. The pulse parameters {l, N } = {2, 16} were
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FIG. 11. In (a) experimental nbRFDR F(ωR ; τm ) data of the leucine C L
β

carbon (symbols) in the LGF peptide carried out with {l, N } = {2, 16} near the
n = 1 R2 condition are shown together with simulated curves using (νd , λ+

1 , λ
ZQ
2 )

equal to (thin line) (500, 9, 0) Hz and (thick line) (500, 9, 70) Hz. In (b) experi-
mental nbRFDR F(ωR ; τm ) data of the leucine C L

γ carbon (symbols) in the LGF

peptide carried out with {l, N } = {2, 16} near the n = 1 R2 condition are drawn
together with a simulated curve using (νd , λ+

1 , λ
ZQ
2 ) equal to (210, 1.5, 0) Hz.
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used for a wide range of spinning frequencies. The decay curves
of the CG

α and C L
α are shown in Fig. 10. The F(νR ; τm) data points

and the fd (νR ; τm) curves with νd equal to 500 and 1790 Hz and
λ+

1 equal to 0 and 10 Hz, respectively, are depicted. In the case
of CG

α the calculated curve is in good agreement with the ex-
perimental data. However, for C L

α an introduction of a large
λ

ZQ
2 value was essential to fit the experiments. A λ

ZQ
2 value of

100 Hz was necessary to obtain a satisfactory fit. Signal to noise
dispersion did not allow a better analysis. The same nbRFDR
experiments were also performed on the C L

β and C L
γ carbons.

Their F(νR ; τm) results are plotted in Fig. 11. Relaxation param-
eters, λ+

1 , were initially deduced from far off-R2 measurements.
Then best fittings were obtained for (νd , λ

+
1 , λ

ZQ
2 ) values equal

to (500; 9; 70) Hz for the C L
β carbon and (210; 1.5; 0) Hz for the

C L
γ carbon, corresponding to distances of 2.5 and 3.3 Å, respec-

tively. A large value of λ
ZQ
2 was necessary to fit the data of the

β-carbon.

Measurements on Sidechain Carbons

To follow the nbRFDR signals of the C L
γ , C L

δ(1) and C L
δ(2) car-

bons the experimental parameters were changed to {l, N } =
{4, 16}. Figures 12b, 13b, and 14b show the nbRFDR results
F(νR ; τm) of the C L

γ , C L
δ(1), and C L

δ(2) carbons, respectively. The
best-fit fd (νR ; τm) curves were calculated for (νd , λ

+
1 , λ

ZQ
2 ) val-

ues of (200, 1.5, 0), (125, 0, 0), and (150, 0, 0) Hz for the C L
γ ,

C L
δ(1), and C L

δ(2) carbons, respectively. Because no data far off the
R2 condition are available in this measurement, the λ+

1 values
had to be estimated during the curve fitting. However, it was
found that the F(ωR ; τm) curves of the C L

δ(1) and C L
δ(2) carbons

could be fitted without the use of this relaxation parameter. The
fitting procedure gave rise to νd values of 125(±5) Hz for the
C L

δ(1) and 150(±10) Hz for the C L
δ(2) carbons. The C L

γ carbon
calculations resulted in νd value of 200(±15) Hz. Experimental
errors are within the size of the symbols shown in the figures.

NbSEDRA experiments were also carried out on the LGF pep-
tide with {l, N } = {4, 24} at spinning frequencies in the vicinity
of the 13C L

OOH–C L
γ and the 13C L

OOH–C L
δ(1),(2) isotropic chemical

shifts differences. These values were chosen to detect weak in-
teractions, as shown in Fig. 5. The measured signals for the C L

γ ,
C L

δ(1) and C L
δ(2) carbons are shown in Figs. 12a, 13a, and 14a,

respectively, together with the k · f 0
d (ωR ; τm) curves. As be-

fore, the k values were estimated from far off-R2 measurements.
The (νd , k) parameters used for the fitting are (200 Hz, 2.6)
for C L

γ , (100Hz, 1.53) for C L
δ(1), and (125Hz, 1.28) for C L

δ(2).
NbSEDRA measurements on C L ,G

α and C L
β carbons could not

be analyzed because their effective spin–spin relaxation times
were very short and signals fully decayed during the mixing
period.

Discussion of the LGF Measurements
Distinctively fast effective relaxation rates were found in the
nbRFDR measurements on the C L

α,β carbons. The COOH–C L
γ

D VEGA

FIG. 12. In (a) nbSEDRA experimental data, G(ωR ; τm ), of the leucine C L
γ

carbon in LGF using {l, N } = {4, 16} are shown together with a simulated curve
(solid line) using νd = 200 Hz and k = 2.6. In (b) nbRFDR experimental data,
F(ωR ; τm ), of the same carbon using {l, N } = {4, 24} are shown together with a
simulated curve (solid line) using (νd , λ+

1 , λ
ZQ
2 ) equal to (200, 1.5, 0) Hz. Both

experiments were carried out near the n = 1 R2 condition.

dipolar couplings measured both by nbSEDRA and nbRFDR
are similar and correspond to a distance of 3.3(±0.1) Å . The
COOH–C L

δ(1) and COOH–C L
δ(2) dipolar couplings deduced from

the nbSEDRA data correspond to distances of 4.24(±0.20)
and 3.93(±0.15) Å, respectively. A comparison of the two ex-
periments shows that the COOH–C L

δ(i) coupling constants ex-
tracted from the nbRFDR measurement do not match the cou-
plings deduced from the nbSEDRA measurements. Moreover,
the former couplings would correspond to short COOH–C L

δ(1) and

COOH–C L
δ(2) distances, 3.9(±0.2) and 3.7(±0.15) Å respectively,

implying a high-energy structure with the leucine sidechain
bent toward the peptide backbone. Within the limitations of
our relaxation model, involving the 

+,−
1 , 

ZQ
2 , and T eff

2 pa-
rameters, these discrepancies could not be explained. More-
over, variation of the leucine sidechain torsion angles could

not produce a conformation that agrees with these distance
measurements.
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FIG. 13. NbSEDRA experiments using {l, N } = {4, 24} and nbRFDR ex-
periments using {l, N } = {4, 16} carried out near the n = 1 R2 condition. In
(a) G(ωR ; τm ) data of the C L

δ(1) carbon in LGF (symbols) are shown together
with a simulated curve using νd = 100 Hz and k = 1.53. In (b) nbRFDR data,
F(ωR ; τm ), of the same carbon are shown together with a simulated curve (solid
line) using (νd , λ+

1 , λ
ZQ
2 ) equal to (125, 0, 0) Hz. Simulations of C L

δ(1) decay
curves using (νd , λ+

1 , λ
ZQ
2 ) equal to (100, 0, 0) Hz and taking into account an

additional intermolecular C L
OOH carbon with a fixed dipolar interaction of 60 Hz

to the Cδ(i) carbons and a varying position are shown as a gray band of decay
curves.

A possible reason for the enhanced decay of the nbRFDR
curves could be the presence of an additional abundant carbonyl
carbon, C (2)

OOH, on an adjacent molecule that is in close proximity
to the C L

δ(i) carbons to affect the data. As shown in Fig. 6, this
would lower the nbRFDR curves. The resultant dipolar decay
curve depends on the orientation of the C L

δ(i)–C (2)
OOH polar vector

with respect to the C L
δ(i)–C (1)

OOH vector. To simulate that effect
on the nbRFDR and nbSEDRA curves the additional carbonyl
carbon was placed at a distance of 5 Å (60 Hz) from the C L

δ(i)
carbons. In the simulations, the interactions in the original spin
pairs were taken to be 100 and 125 Hz for the C L

δ(1) and C L
δ(2),
respectively. The angles between the two vectors, connecting
the carbonyl carbons and the δ(i)-carbon, were freely varied to
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produce a range of decay curves. The results of these simulations
are shown in Figs. 11b and 12b. It is clearly seen in these figures
that the dipolar decay curves measured by both nbSEDRA and
nbRFDR lie within the range of simulated curves and that the
results found by the two techniques are in good agreement. The
nbRFDR and nbSEDRA measurements on the side-chain car-
bons are summarized in Table 1. The distances extracted from
these experiments are comparable to the leucine side-chain dis-
tances in the Leu-Gly-Gly (LGG) peptide as reported in previous
X-ray diffraction study (35).

The relaxation parameters necessary for the data fitting vary
from experiment to experiment and from carbon to carbon. Zero-
quantum rates were necessary to fit the nbRFDR results of C L

α

and C L
β only. NbSEDRA on both of these carbons could not
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FIG. 14. NbSEDRA experiments in the LGF peptide carried out near the
n = 1 R2 condition using {l, N } = {4, 24}. In (a) experimental G(ωR ; τm ) data
of the C L

δ(2) carbon in LGF (symbols) are shown together with a simulated curve
using νd = 125 Hz and k = 1.28. In (b) nbRFDR data, F(ωR ; τm ), of the same
carbon are shown together with a simulated curve (solid line) using (νd , λ+

1 , λ
ZQ
2 )

equal to (150, 0, 0) Hz. Simulations of C L
δ(2) decay curves using (νd , λ+

1 , λ
ZQ
2 )
equal to (125, 0, 0) Hz and taking into account an additional intermolecular
C L

OOH carbon with a fixed dipolar interaction of 60 Hz to the Cδ(i) carbons and
a varying position are shown as a gray band of decay curves.
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TABLE 1
Molecular Distances of Leucine Sidechain in the LGF Peptide

Derived from NbRFDR and NbSEDRA Experiments

COOH–C L
γ COOH–C L

δ(1) COOH–C L
δ(2)

NbRFDR 3.3(±0.1) A
❛

4.2(±0.2) A
❛

[3.9 A
❛

]a 3.9(±0.2) A
❛

[3.7 A
❛

]a

NbSEDRA 3.3(±0.1) A
❛

4.3(±0.2) A
❛

[4.2 A
❛

]a 3.9(±0.2) A
❛

[3.9 A
❛

]a

X-ray LGGb 3.3 A
❛

4.3 A
❛

3.9 A
❛

a Distances were deduced from a model taking into account an intermolecular
Co carbon at a distance of 5 A

❛

from the Cδ(i) carbons. Distances given in brackets
were deduced from calculations neglecting this additional coupling.

b Data for LGG were derived from work by Goswami et al. (35).

be performed because of short effective transverse relaxation
times. These two observations are perhaps connected and some
relaxation mechanism, such as a fast molecular reorientation or
a strong proton–carbon interaction, reduces the phenomenolog-
ical relaxation rates significantly. To study the origin of these
effects, temperature dependent studies could be considered. All
other carbons exhibit λ+

1 values varying between 0 and 10 Hz,
with the large values, 9–10 Hz, for the C L

α,β carbons, respec-
tively, and smaller value, 1.5 Hz, for the C L

γ carbon. The values
of the nbSEDRA T eff

2 relaxation times of the γ - and the two δ-
carbons are 18.7, 42.1, and 72.5 ms, respectively. The fact that
the two relaxation times of the methyl carbons differ by ∼30 ms
is not yet understood.

CONCLUSIONS

In this publication we have shown that the nbRFDR and
nbSEDRA techniques can easily be used for nuclear distance
measurements between homonuclear spins. The fitting proce-
dure suggested here has made it possible to improve the ex-
tent and the quality of distance measurements and to analyze
data on spin pairs characterized by different effective longitu-
dinal relaxation rates. The simplicity of these experiments and
the straightforward data analysis can make these experiments
favorable over other distance measurements, despite their infe-
rior dephasing characteristics. Another practical aspect of the
narrowband measurements is their ease with which distances
between high and low abundant carbons can be determined. Be-
cause of the small span of spinning frequencies used in these
experiments, effects of rf imperfections have been reduced sig-
nificantly and can be accounted for by the phenomenological
relaxation parameters +

1 and T eff
2 for a nearly constant dephas-

ing time τm . As a result it can become easier to analyze narrow-
band experimental data rather than time dependent measure-
ments. NbRFDR measurements are shown to be more sensitive
than nbSEDRA measurements to effects of additional dipolar
couplings to proximate intermolecular magnetically equivalent
carbons. The narrowband techniques were employed to study

the orientation of the leucine residue in the LGF peptide. In-
terestingly, these measurements have shown (see Table 1) that
ND VEGA

the leucine sidechain in this sample is oriented in a conforma-
tion that is similar to the leucine sidechain conformation in the
LGG peptide. This is the case despite the presence of a large
moiety such as the phenyl ring in the LGF molecule. Extensions
of the narrowband approach toward two-dimensional homonu-
clear correlation and experiments in large coupled spin systems
should now be considered.
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